

Computational Simulations of Electronic and Optical Properties of Nanomaterials

Bin Wang

Chemical, Biological and Materials Engineering The University of Oklahoma

OKLAHOMA SUPERCOMPUTING SYMPOSIUM, Sept. 24th 2014

Computational Materials and Chemical Science Advanced materials for energy

Phase-change materials for molecular sensors

Molecular switch

2D materials (graphene, h-BN, MoS₂, etc)

What Can We Do?

Density Functional Theory

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r}) + e^2\int \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r + \mu_x(n(\vec{r}))\right] \Phi_i(\vec{r}) = \varepsilon_i \Phi_i(\vec{r})$$

Electron density n(r); Total Energy

...

Ground State Properties

Structures Chemical Reaction Barriers Vibration Band Structure Core Levels Spins Optics

Temperature, time, scale

Molecular dynamics simulation Kinetic Monte Carlo Simulation

Excitation, Conductance

GW and BSE calculations Non-equilibrium Green's Function

Two-Dimensional Materials

Metal

Semiconductor

Insulator

and a lot of others: Graphane, Silicene, Bi_2Se_3 , β -FeSe, $Ti_3C_2(OH)_2$, transition metal oxides

A.K.M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, K. I. Bolotin, Nature Commun. 3, 734 (2012)

Defects and impurities in graphene
 Vacancies and chemical impurities : N, O
 Ripples, liquids, and transport

2. Exciton in MoS₂ under strain

Functionalization: Substitutional Doping

Vacancies:

- Scatter electrons
- Q: How to heal vacancies?
- N-doping (substitution):
 - enhanced carrier density; (2s² 2p³)
 - enhanced chemical activity;
 - Oxygen reduction reaction : Pt/C
 - Liang et al. Nature Mater. 2012 Cong et al. Science 2009 Qu et al. ACS Nano 2010

NH₃ : > 800 °C annealing; low mobility Q : Low-T process; improved mobility

Incorporation of Carbon Using CO

How to remove oxygen?

Removal of Oxygen – Thermal Annealing

E. Zhang, AKM Newaz, B. Wang, C. Zhang, D. Fleetwood, K. Bolotin, R. D. Schrimpf, S. T. Pantelides, M. L. Alles, IEEE Transactions on Nuclear Science, 6, 2961 (2011); APL 101, 121601 (2012)

Removal of Oxygen

Removal of Oxygen

Vacancy created when removal of oxygen : scatter electrons

Incorporation of Nitrogen Using NO

MD simulation

Healing or Doping

Verified experimentally by Narayanan et al. JVST A, 2013

B. Wang, S. T. Pantelides, Phys. Rev. B 83, 245403 (2011)

Defects and impurities in graphene
 Vacancies and chemical impurities : N, O
 Ripples, liquids, and transport

2. Exciton in MoS₂ under strain

Modification of Transport in Graphene

Modification of Transport in Graphene

A.K.M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, K. I. Bolotin, Nature Commun. 3, 734 (2012)

Take-home Message 1

Functionalization methods : substitution, impurities, vdW

Benefits: enhanced conductivity, mobility, tunable WF, etc

S. T. Pantelides, Y. Puzyrev, L. Tsetseris, B. Wang, MRS Bulletin 37, 1187-1194 (2012)

Engineering of MoS₂ Band Structure

Direct to Indirect Optical Transition: Theory

Q : achievable in experiments ?

Direct to Indirect Optical Transition: Experiments

Phonon Softening : Experiments + Theory

Q: How much MoS₂ is strained?

Combined Theory and Experiments

Optical Gap Switch

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, K. I. Bolotin, Nano Lett. 13, 3626 (2013)

Take-home Message 2

✓ Reduce the band gap
✓ Optically direct → indirect
✓ 1.4% - 5%: optical switch

Thanks for your attention

Vanderbilt University:

Prof. Sokrates T. Pantelides Dr. Yevgeniy S. Puzyrev
Prof. Kirill I. Bolotin
Dr. AKM Newaz (now SFSU)
Dr. Hiram Conley (now Intel)
Prof. Daniel M. Fleetwood
Prof. Ronald D. Schrimpf
Dr. Enxia Zhang